retreating footsteps. But it produced no effect, except

time: 2023-12-02 13:39:07laiyuan:toutiaovits: 22

"Electric current," corrected Edison.

retreating footsteps. But it produced no effect, except

"True," continued Johnson; "you were the one to make that very distinction. The scientific world had been working hard on subdivision for years, using what appeared to be common sense. Results worse than nil. Then you come along, and about the first thing you do, after looking the ground over, is to start off in the opposite direction, which subsequently proves to be the only possible way to reach the goal. It seems to me that this is pretty close to the dictionary definition of genius."

retreating footsteps. But it produced no effect, except

It is said that Edison replied rather incoherently and changed the topic of conversation.

retreating footsteps. But it produced no effect, except

This innate modesty, however, does not prevent Edison from recognizing and classifying his own methods of investigation. In a conversation with two old associates recently (April, 1909), he remarked: "It has been said of me that my methods are empirical. That is true only so far as chemistry is concerned. Did you ever realize that practically all industrial chemistry is colloidal in its nature? Hard rubber, celluloid, glass, soap, paper, and lots of others, all have to deal with amorphous substances, as to which comparatively little has been really settled. My methods are similar to those followed by Luther Burbank. He plants an acre, and when this is in bloom he inspects it. He has a sharp eye, and can pick out of thousands a single plant that has promise of what he wants. From this he gets the seed, and uses his skill and knowledge in producing from it a number of new plants which, on development, furnish the means of propagating an improved variety in large quantity. So, when I am after a chemical result that I have in mind, I may make hundreds or thousands of experiments out of which there may be one that promises results in the right direction. This I follow up to its legitimate conclusion, discarding the others, and usually get what I am after. There is no doubt about this being empirical; but when it comes to problems of a mechanical nature, I want to tell you that all I've ever tackled and solved have been done by hard, logical thinking." The intense earnestness and emphasis with which this was said were very impressive to the auditors. This empirical method may perhaps be better illustrated by a specific example. During the latter part of the storage battery investigations, after the form of positive element had been determined upon, it became necessary to ascertain what definite proportions and what quality of nickel hydrate and nickel flake would give the best results. A series of positive tubes were filled with the two materials in different proportions--say, nine parts hydrate to one of flake; eight parts hydrate to two of flake; seven parts hydrate to three of flake, and so on through varying proportions. Three sets of each of these positives were made, and all put into separate test tubes with a uniform type of negative element. These were carried through a long series of charges and discharges under strict test conditions. From the tabulated results of hundreds of tests there were selected three that showed the best results. These, however, showed only the superiority of cer- tain PROPORTIONS of the materials. The next step would be to find out the best QUALITY. Now, as there are several hundred variations in the quality of nickel flake, and perhaps a thousand ways to make the hydrate, it will be realized that Edison's methods led to stupendous detail, for these tests embraced a trial of all the qualities of both materials in the three proportions found to be most suitable. Among these many thousands of experiments any that showed extraordinary results were again elaborated by still further series of tests, until Edison was satisfied that he had obtained the best result in that particular line.

The laboratory note-books do not always tell the whole story or meaning of an experiment that may be briefly outlined on one of their pages. For example, the early filament made of a mixture of lampblack and tar is merely a suggestion in the notes, but its making afforded an example of Edison's pertinacity. These materials, when mixed, became a friable mass, which he had found could be brought into such a cohesive, putty-like state by manipulation, as to be capable of being rolled out into filaments as fine as seven-thousandths of an inch in cross-section. One of the laboratory assistants was told to make some of this mixture, knead it, and roll some filaments. After a time he brought the mass to Edison, and said:

"There's something wrong about this, for it crumbles even after manipulating it with my fingers."

"How long did you knead it?" said Edison.

"Oh! more than an hour," replied the assistant.

Source of this article:http://axsox.zw775.com/news/004a099336.html

Copyright statement: The content of this article was voluntarily contributed by internet users, and the views expressed in this article only represent the author themselves. This website only provides information storage space services and does not hold any ownership or legal responsibility. If you find any suspected plagiarism, infringement, or illegal content on this website, please send an email to report it. Once verified, this website will be immediately deleted.

    Related articles

    tags

    foodsystempersonwaymethodinternetlawhealthyearmusichotthanksartabilitytelevisiontwomethodknowledgegovernmentreadingdatawaylawlovemeatsoftwarecomputersystemcontrolbird