The two hundred and odd note-books, covering the strenuous period during which Edison was carrying on his electric-light experiments, tell on their forty thousand pages or more a fascinating story of the evolution of a new art in its entirety. From the crude beginnings, through all the varied phases of this evolution, the operations of a master mind are apparent from the contents of these pages, in which are recorded the innumerable experiments, calculations, and tests that ultimately brought light out of darkness.
The early work on a metallic conductor for lamps gave rise to some very thorough research on melting and alloying metals, the preparation of metallic oxides, the coating of fine wires by immersing them in a great variety of chemical solutions. Following his usual custom, Edison would indicate the lines of experiment to be followed, which were carried out and recorded in the note-books. He himself, in January, 1879, made personally a most minute and searching investigation into the properties and behavior of plating-iridium, boron, rutile, zircon, chromium, molybdenum, and nickel, under varying degrees of current strength, on which there may be found in the notes about forty pages of detailed experiments and deductions in his own handwriting, concluding with the remark (about nickel): "This is a great discovery for electric light in the way of economy."
This period of research on nickel, etc., was evidently a trying one, for after nearly a month's close application he writes, on January 27, 1879: "Owing to the enormous power of the light my eyes commenced to pain after seven hours' work, and I had to quit." On the next day appears the following entry: "Suffered the pains of hell with my eyes last night from 10 P.M. till 4 A.M., when got to sleep with a big dose of morphine. Eyes getting better, and do not pain much at 4 P.M.; but I lose to-day."
The "try everything" spirit of Edison's method is well illustrated in this early period by a series of about sixteen hundred resistance tests of various ores, minerals, earths, etc., occupying over fifty pages of one of the note-books relating to the metallic filament for his lamps.
But, as the reader has already learned, the metallic filament was soon laid aside in favor of carbon, and we find in the laboratory notes an amazing record of research and experiment conducted in the minute and searching manner peculiar to Edison's method. His inquiries were directed along all the various roads leading to the desired goal, for long before he had completed the invention of a practical lamp he realized broadly the fundamental requirements of a successful system of electrical distribution, and had given instructions for the making of a great variety of calculations which, although far in advance of the time, were clearly foreseen by him to be vitally important in the ultimate solution of the complicated problem. Thus we find many hundreds of pages of the note-books covered with computations and calculations by Mr. Upton, not only on the numerous ramifications of the projected system and comparisons with gas, but also on proposed forms of dynamos and the proposed station in New York. A mere recital by titles of the vast number of experiments and tests on carbons, lamps, dynamos, armatures, commutators, windings, systems, regulators, sockets, vacuum-pumps, and the thousand and one details relating to the subject in general, originated by Edison, and methodically and systematically carried on under his general direction, would fill a great many pages here, and even then would serve only to convey a confused impression of ceaseless probing.
It is possible only to a broad, comprehensive mind well stored with knowledge, and backed with resistless, boundless energy, that such a diversified series of experiments and investigations could be carried on simultaneously and assimilated, even though they should relate to a class of phenomena already understood and well defined. But if we pause to consider that the commercial subdivision of the electric current (which was virtually an invention made to order) involved the solution of problems so unprecedented that even they themselves had to be created, we cannot but conclude that the afflatus of innate genius played an important part in the unique methods of investigation instituted by Edison at that and other times.
The idea of attributing great successes to "genius" has always been repudiated by Edison, as evidenced by his historic remark that "Genius is 1 per cent. inspiration and 99 per cent. perspiration." Again, in a conversation many years ago at the laboratory between Edison, Batchelor, and E. H. Johnson, the latter made allusion to Edison's genius as evidenced by some of his achievements, when Edison replied:
"Stuff! I tell you genius is hard work, stick-to-it- iveness, and common sense."
Source of this article:http://axsox.zw775.com/html/013e099327.html
Copyright statement: The content of this article was voluntarily contributed by internet users, and the views expressed in this article only represent the author themselves. This website only provides information storage space services and does not hold any ownership or legal responsibility. If you find any suspected plagiarism, infringement, or illegal content on this website, please send an email to report it. Once verified, this website will be immediately deleted.